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Abstract: Trade-offs between power system's optimal operational performance and the minimal number of control adjustments
necessary to attain a desired operating point make optimal reactive dispatch (ORD) solutions practical to system operators. In
this study, a multi-objective ORD model that provides, in terms of weighting factors, trade-offs between minimal active power
losses in transmission systems and minimal number of control adjustments in generator voltages, tap ratios and shunt controls
is featured. This multi-objective ORD is formulated as a mixed-integer non-linear programming (MINLP) problem, and the
proposed resolution methodology is based on translating the original MINLP problem into non-linear programming (NLP)
problem deploying a sigmoid function, enabling the use of NLP solvers. Both original MINLP and translated NLP models are
implemented in GAMS and numerical tests with IEEE test-systems with up to 300 buses are conducted using DICOPT, KNITRO
and CONOPT solvers to validate the proposed ORD model and its resolution methodology. Results demonstrate the relation
between active power losses and the number of adjustments in control variables, which is valuable information for operation
planning. Another fundamental result is the high computational performance of the method when compared to specialized
MINLP solvers.

1௑Introduction
Optimal power flows (OPFs) have gained special attention due to
novel challenges in transmission system operation caused by
increasing penetration of renewable energy sources such as wind
and solar, new high-voltage DC systems and the management of an
aging infrastructure. In view of these characteristics, the consensus
is to operate the system in an optimised mode while guaranteeing
its robustness, flexibility and economic efficiency.

Since the seminal work done by Carpentier [1], which consisted
in a new formulation for the economic dispatch problem by the
incorporation of power flow equations into the set of equality
constraints, many improvements on modelling and resolution
methodologies have been proposed [2–6]. Moreover, the
development of robust solvers for such a complex class of
problems has been shown as a timely research topic [7, 8].

Many improvements have focused on the mathematical
optimisation of standard and simplified formulations expressed in
continuous non-linear programming (NLP) form [9–11], neglecting
relevant practical aspects for power system operators. Only a few
studies consider the integer modelling of some decision variables,
mainly due to the increase in problem complexity and
computational time for its resolution, especially for large systems
[12]. On the other hand, for practical aspects, a small number of
control adjustments to implement over a time period to attain a
desired operational performance is preferred. Standard OPF
formulations usually have limited practical scope in this sense,
since optimisation techniques adjust the decision variables to attain
the optimum. Those aspects are mentioned in [13–15], where the
review on the state of the art of OPF formulation, resolution
methods and critical analysis on the deficiencies in OPF modelling
that restrains its practical use for power system operation are
presented. One of the deficiencies pointed out in these works and
that still imposes difficulties in the practical use of optimal reactive
dispatch (ORD) solutions concerns the number of control
adjustments used to attain the power system's optimal operational
performance, since the number of control adjustments may be too
large to be implemented in a short time interval, whether in normal
or post-contingency operating scenarios. In fact, this deficiency

may be considered as one of the major drawbacks in the practical
use of OPF solutions.

Few studies have focused on limiting the number of
adjustments of control variables in OPF models. In [16], the
minimisation of active power losses for the IEEE 30-bus test-
system is solved in two stages: in the first stage, the OPF is solved
by a sequential linear programming technique; then, in the second
stage, an expert-system-based optimisation technique is used to
alleviate constraint violations, minimising the number of switching
actions associated with control adjustments. Another approach
found in the literature is to empirically limit the adjustment of
control variables. In this context, two approaches to the OPF
problem formulation which sets a predetermined number of control
adjustments were proposed in [17].

The main difficulty in limiting the number of control
adjustments is associated with the fact that control variables
participate in both improving the objective function and satisfying
operational constraints. The precise evaluation of the impact of the
joint application of these controls is not trivial [14, 15]. Therefore,
the trade-offs between a power system's optimal operation
performance while satisfying operational constraints and the
minimal number of control adjustments necessary to attain such an
operating point is desirable [18].

There is a conflicting relation between minimising active power
losses and minimising the number of control adjustments in
transmission systems. Considering the published papers in which
the main contributions are either the numerical resolution of large
non-convex NLP problems or the modelling of integer variables,
the main contribution of this paper is the proposal of a multi-
objective ORD model designed to be solved efficiently. The
system's performance is represented by a non-linear, non-convex
and non-separable objective function and binary variables are used
to model whether control variables are adjusted or not. To solve the
proposed ORD, the corresponding mixed-integer NLP (MINLP)
problem is translated into an NLP problem, converting the binary
variables into continuous by means of a sigmoid function, which
enables the use of NLP solvers. To validate such a methodology,
the translated NLP problem is implemented in GAMS and solved
by a commercial solver (CONOPT), whose results are compared to
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the ones obtained by the resolution of the original MINLP problem
by two specialised solvers (DICOPT and KNITRO). Furthermore,
the two conflicting objective functions are analysed in a multi-
objective perspective considering different weighting factors.

In summary, this paper handles the numerical optimisation of
large non-convex MINLP problems, overcoming additional
difficulties arisen from the optimisation of multiple conflicting
objectives with different formulation domains (continuous versus
integer).

The remaining of this paper is structured as follows: Section 2
presents the multi-objective ORD problem to minimise active
power losses and the number of control adjustments. In Section 3,
the proposed methodology for solving the proposed multi-objective
ORD problem is presented. Numerical tests carried out with IEEE
benchmark test-systems with up to 300 buses are shown in Section
4. Finally, the main contributions of the paper are summarised and
highlighted in Section 5.

2௑Multi-objective ORD
Initially, two ORD problems, which compose the proposed multi-
objective model, will be presented separately. They are the
minimisation of active losses in power transmission systems and
the minimisation of control adjustments necessary to attain the
desired performance.

2.1 ORD model to minimise active power losses

The minimisation of active losses in transmission power systems is
formulated as follows:

min PLoss

s . t . : Pk − ∑
m ∈ Vk

Pkm(V, θ, t) = 0, ∀k ∈ G′ ∪ C

Qk + Qk
sh(Vk) − ∑

m ∈ Vk

Qkm(V, θ, t, b
sh) = 0, ∀k ∈ C

QGk

min ≤ QGk
(V, θ, t, b

sh) ≤ QGk

max, ∀k ∈ G

Vk
min ≤ Vk ≤ Vk

max, ∀k ∈ ℬ

tkm
min ≤ tkm ≤ tkm

max, ∀k, m ∈ T

bk
shmin

≤ bk
sh ≤ bk

shmax

, ∀k ∈ ℬsh

(1)

where PLoss is the total active power loss on transmission
components

PLoss = ∑
k, m ∈ ℒ ∪ T

gkm
1

tkm
2 Vk

2 + Vm
2 − 2

1
tkm

VkVmcos θkm , (2)

and V and θ are, respectively, the voltage magnitude and phase
angle vectors on generation and load buses; t is the vector of tap
ratio of on-load tap-changer (OLTC) in-phase transformers; b

sh is
the vector of shunt susceptances associated with capacitor banks
and reactors; Pk and Qk are, respectively, the active and reactive
power injections at bus k; Pkm and Qkm are, respectively, the active
and reactive power flows from bus k to bus m; QGk

 is the reactive
power output of generators or synchronous condensers connected
to bus k; Qk

sh is the reactive power injection at bus k by shunt
capacitor banks or shunt reactors; tkm

min and tkm
max are the vectors with

lower and upper bounds of the tap ratio of OLTC in-phase
transformers, respectively; bk

shmin

 and bk
shmax

 are the vectors with
lower and upper bounds of the shunt susceptances associated with
capacitor banks and reactors, respectively; gkm is the series
conductance of branch k − m; and θkm = θk − θm. In (1), t and b

sh

are modelled as continuous variables, however, from a practical
standpoint, these control variables can only be adjusted by discrete
steps.

In addition, ℬ is the set of all system buses; G is the set of all
generation buses; G′ is the set of all generation buses except for the

slack bus, C is the set of load buses; ℒ is the set of all
transmission line branches; T is the set of all in-phase OLTC
transformers, ℬsh is the set of all shunt capacitor banks and
reactors, Vk is the set of index of buses connected to bus k through
transmission lines and transformers.

2.2 ORD model to minimise the number of control
adjustments

The minimisation of control adjustments necessary to attain the
desired performance can be formulated by the incorporation of
appropriate constraints and bounds on control adjustments [14].
The resulting formulation of this ORD problem is

min N

s . t . : Pk − ∑
m ∈ Vk

Pkm(V, θ, t) = 0, ∀k ∈ G′ ∪ C

Qk + Qk
sh(Vk) − ∑

m ∈ Vk

Qkm(V, θ, t, b
sh) = 0, ∀k ∈ C

QGk

min ≤ QGk
(V, θ, t, b

sh) ≤ QGk

max, ∀k ∈ G,

Vk
min ≤ Vk ≤ Vk

max, ∀k ∈ ℬ

tkm
min ≤ tkm ≤ tkm

max, ∀k, m ∈ T

bk
shmin

≤ bk
sh ≤ bk

shmax

, ∀k ∈ ℬsh

PLoss ≤ PLoss
max ,

s1k
(Vk

min − Vk
0) ≤ Vk − Vk

0, ∀k ∈ G

Vk − Vk
0 ≤ s1k

(Vk
max − Vk

0), ∀k ∈ G

s2km
(tkm

min − tkm
0 ) ≤ tkm − tkm

0 , ∀k, m ∈ T

tkm − tkm
0 ≤ s2km

(tkm
max − tkm

0 ), ∀k, m ∈ T

s3k
bk

shmin

− bk
sh0

≤ bk
sh − bk

sh0

, ∀k ∈ ℬsh

bk
sh − bk

sh0

≤ s3k
bk

shmax

− bk
sh0

, ∀k ∈ ℬsh

s1, s2, s3 ∈ {0; 1}

(3)

where N is the number of control adjustments

N = ∑
k ∈ G

s1k
+ ∑

k, m ∈ T

s2km
+ ∑

k ∈ ℬsh

s3k
, (4)

and PLoss
max  corresponds to the maximum active power losses used to

represent a desired system performance; Vk
0 is the initial value

assigned to Vk; tkm
0  is the initial value assigned to tkm; bk

sh0

 is the
initial value assigned to bk

sh; and s1k
, s2km

 and s3k
 are binary variables

associated with, respectively, control adjustments in Vk, tkm and bk
sh;

variables s1k
, s2km

 and s3k
 assume 1 when the control variable must

be adjusted and 0 when it must not. Therefore, the controls
considered in the model (3) are the voltage magnitude set of
generators and synchronous condensers (i.e. voltage control on
generation buses), tap ratios of OLTC transformers and equivalent
susceptance of capacitor banks and reactors.

2.3 Proposed multi-objective ORD model

The multi-objective model proposed in this paper aims at
minimising active losses as well as the number of control
adjustments. Such a combination of conflicting objectives and the
handling of integer variables in the following model increases the
complexity of this ORD problem. Thus, the proposed multi-
objective ORD problem is formulated as follows:
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min [PLoss, N]T

s . t . : Pk − ∑
m ∈ Vk

Pkm(V, θ, t) = 0, ∀k ∈ G′ ∪ C

Qk + Qk
sh(Vk) − ∑

m ∈ Vk

Qkm(V, θ, t, b
sh) = 0, ∀k ∈ C

QGk

min ≤ QGk
(V, θ, t, b

sh) ≤ QGk

max, ∀k ∈ G

Vk
min ≤ Vk ≤ Vk

max, ∀k ∈ ℬ

tkm
min ≤ tkm ≤ tkm

max, ∀k, m ∈ T

bk
shmin

≤ bk
sh ≤ bk

shmax

, ∀k ∈ ℬsh

s1k
(Vk

min − Vk
0) ≤ Vk − Vk

0, ∀k ∈ G

Vk − Vk
0 ≤ s1k

(Vk
max − Vk

0), ∀k ∈ G

s2km
(tkm

min − tkm
0 ) ≤ tkm − tkm

0 , ∀k, m ∈ T

tkm − tkm
0 ≤ s2km

(tkm
max − tkm

0 ), ∀k, m ∈ T

s3k
bk

shmin

− bk
sh0

≤ bk
sh − bk

sh0

, ∀k ∈ ℬsh

bk
sh − bk

sh0

≤ s3k
bk

shmax

− bk
sh0

, ∀k ∈ ℬsh

s1k
∈ {0, 1}k ∈ G

s2km
∈ {0, 1}k, m ∈ T

s3k
∈ {0, 1}k ∈ B

sh

(5)

For the sake of simplicity, the mathematical formulation of (5) may
be restated in the compact general form

min [ f (x), S]T

s . t . : gi(x) = 0, i = 1, …, p

hi(x) ≤ 0, i = 1, …, q

xi
min ≤ xi ≤ xi

max, i = 1, …, n

si(x1i

min − x1i

0 ) ≤ x1i
− x1i

0 , i = 1, …, m1

x1i
− x1i

0 ≤ si(x1i

max − x1i

0 ), i = 1, …, m1

si ∈ {0; 1}, i = 1, …, m1

(6)

where S is the number of control adjustments with S = ∑i = 1

m1 si;
x = (x1, x2), x1 ∈ ℝm1 is the vector of continuous control variables
(since t and bsh are modelled as continuous control variables in (5))
and x2 ∈ ℝm2 is the vector of dependent variables; x ∈ ℝn;
x

min, x
max ∈ ℝn are vectors with lower and upper bounds of x,

respectively; x1
min, x1

max ∈ ℝm1 are vectors with lower and upper
bounds of x1; x1

0 is the vector of initial values assigned to x1; s is the
vector of binary variables related to each variable of x1 (si assumes
1 when the variable x1i

 must be adjusted and 0 when it must not);
f :ℝn ↦ ℝ; g:ℝn ↦ ℝp, with p < n; and h:ℝn ↦ ℝq.

3௑Strategies for solving the proposed multi-
objective ORD problem
3.1 Weighting method

In the weighting method, the idea is to associate each objective
function with a weighting coefficient and minimise the weighted
summation of objectives. In this sense, the multi-objective problem
is converted into a single objective problem in terms of weighting
factors, and classical optimisation methods may be used to solve
the problem. The information on this approach and its optimality
can be found in [19].

Now consider the following multi-objective optimisation
problem:

min F(x) = f 1(x), …, f k(x) T

s . t . : gi(x) = 0, i = 1, …, p

hi(x) ≤ 0, i = 1, …, q

xi
min ≤ xi ≤ xi

max, i = 1, …, n

(7)

where k ≥ 2 represents the number of objective functions in
F : R

n ↦ R
k.

Thus, the multi-objective optimisation problem (7) is
transformed into the following weighting problem:

min ∑
i = 1

k

ωi f i(x)

s . t . : gi(x) = 0, i = 1, …, p

hi(x) ≤ 0, i = 1, …, q

xi
min ≤ xi ≤ xi

max, i = 1, …, n

(8)

where ωi ≥ 0 is the weighting factor associated with the ith
objective function in F(x). ωi is a positive real number such that the
summation of all ωi is greater than zero. Generally, it is assumed
that ∑i = 1

k
ωi = 1.

Therefore, the proposed multi-objective ORD (6) can be
formulated as the following problem:

min ω1 f (x) + ω2S

s . t . : gi(x) = 0, i = 1, …, p

hi(x) ≤ 0, i = 1, …, q

xi
min ≤ xi ≤ xi

max, i = 1, …, n

si(x1i

min − x1i

0 ) ≤ x1i
− x1i

0 , i = 1, …, m1

x1i
− x1i

0 ≤ si(x1i

max − x1i

0 ), i = 1, …, m1

si ∈ {0; 1}, i = 1, …, m1

(9)

Notice that for k = 2, ω1 can be exchanged by ω and ω2 by (1 − ω)
so that there is only one varying weighting factor, whose
summation remains equal to 1.

3.2 Sigmoid-function-based multi-objective model for
handling binary variables

There are many real life MINLP problems whose integer variables
are modelled as binary variables. However, depending on the
system size and complexity, few exact methods can efficiently
solve such problems successfully. This happens due to the
complexity of handling a large number of binary variables. For
example, even one of the simplest cases with a quadratic objective
function and linear constraints is classified as an NP-hard problem
[20].

In order to deal with binary variables in problems such as (9), a
heuristic strategy that employs the sigmoid function proposed in
[21], which was originally applied to transmission expansion
planning problems, is used here. To deal with binary variables in
(9), the sigmoid function χ :ℝ ↦ ℝ is defined as

χ(y) =
eτy − 1

eτy + 1
, (10)

where τ is the slope of the sigmoid function. The higher the value
assigned to τ, the greater the slope of the sigmoid function, which
tends to a right angle. The argument y is a non-negative real value
since the sigmoid function χ assumes negative values between −1
and 0 for y < 0.

The inclusion of (10) into (9) consists in substituting variables s
by χ(y), which results in the following modified problem:
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min ω1 f (x) + ω2 ∑
i = 1

m1

χ(yi)

s . t . : gi(x) = 0, i = 1, …, p

hi(x) ≤ 0, i = 1, …, q

xi
min ≤ xi ≤ xi

max, i = 1, …, n

χ(yi)(x1i

min − x1i

0 ) ≤ x1i
− x1i

0 , i = 1, …, m1

x1i
− x1i

0 ≤ χ(yi)(x1i

max − x1i

0 ), i = 1, …, m1

0 ≤ yi ≤ yi
max, i = 1, …, m1

(11)

since χ is a function that returns a real value between 0 and 1 as τ
has its value increased, i.e. χ(yi) is used to model the binary
variable si such that the assumption χ(yi) = si is valid and, thus, the
modified problem (11) associated with (9) can be solved by the
NLP algorithms.

3.3 Proposed algorithm

The proposed algorithm consists in solving a sequence of modified
problems such as (11) for increasing values of τ until all yi,
i = 1, …, m1, assume binary values in χ under a certain numerical
tolerance. The variable τ is increased linearly by the factor c, which
is set within the half-closed interval (1,10] (the end point 1 is not
included in such an interval because τ would never increase if c
could assume the value 1).

By successively increasing τ, a sequence of NLP problems is,
then, solved and, as a result, the binary variables modelled by the
sigmoid function will converge to binary values. However, the
successive increase in τ may cause ill-conditioning issues. For this
situation, a heuristic strategy to improve the convergence of the
algorithm by reducing ill-conditioning issues has been devised.

The process of successive resolutions of (11) and parameter
setting τ continues until a convergence criterion is satisfied. The
convergence criterion consists in assessing whether χ(yi) in the kth
iteration assumes a binary value. Mathematically, such a criterion
is represented by

∥ χ yk − o
k ∥

∞
≤ ξ1 (12)

where o
k is the vector of binary elements (0 or 1), with each

element i of ok corresponding to the nearest binary value of each
element i of χ yk ; and ξ1 is the algorithm's convergence tolerance.

The proposed algorithm for an MINLP problem with binary
variables as (9) is summarised in Algorithm 1 (see Fig. 1). 

According to [21], while the only value that maps χ y  to 0 is 0,
the upper-bound argument of the sigmoid function may take any
value that maps χ y  close to 1. Many tests have been carried out to
determine which value of y maps χ y  sufficiently close to 1, and
the upper-bound argument that has provided the best results is
y = 20. Therefore, the variable y should be in the range 0 ≤ y ≤ 20,
in which the upper bound has been determined empirically. To
speed up the algorithm's convergence, χ y  is rounded-off when it
is sufficiently close to 0 or 1. So, if χ yi

k ≤ 0.1, we consider
χ yi

k = 0; on the other hand, if χ yi
k ≥ 0.9, we consider χ yi

k = 1.
The resolution complexity of this algorithm depends on the
complexity of each corresponding NLP. Therefore, different
solvers with different algorithms may also present different
performances.

4௑Numerical results and analysis
The multi-objective ORD models represented by (9) and (11) have
been implemented in GAMS modelling language [22]. For the
MINLP problem (9), DICOPT [23] and KNITRO [24] solvers were
used. Both DICOPT and KNITRO are MINLP commercial solvers
for optimisation problems with binary variables. DICOPT is based
on three key ideas: outer approximation, equality relaxation and
augmented penalty. The MINLP algorithm used by DICOPT solves
a series of NLP and mixed-integer programming (MIP) sub-
problems using any available NLP or MIP solver in GAMS. In the
current simulation, the NLP sub-problems have been solved by
CONOPT [25, 26] (which applies the generalised reduced gradient
algorithm) and MIP sub-problems have been solved by CPLEX
[27] by DICOPT. The KNITRO MIP code offers two algorithms
for MINLP. The first one is a nonlinear branch-and-bound method
and the second one uses the hybrid Quesada-Grossman method
[28] for convex MINLP. The model (11), which represents our
proposal, has been solved with CONOPT solver.

The test systems used to verify the robustness and efficacy of
the proposed ORD model and resolution methodology are the IEEE
14, 30, 57, 118 and 300-bus benchmark test-systems (Table 1). The
simulations have been carried out on a PC with i7-4770 @ 3,4 GHz
processor running MS Windows 10 operating system with 8 GB of
RAM. 

For all systems, voltage magnitude limits Vk
min and Vk

max for each
bus k were 0.90 and 1.10 p.u.; tap ratio limits tkm

min and tkm
max for each

OLTC transformer were 0.88 and 1.12 p.u.; and bk
shmin

 and bk
shmax

limits were determined for each system and can be found in [29].
In all tests with the proposed Algorithm 1 (Fig. 1), the convergence
tolerance ξ1 was 10−4.

Tables 2–7 summarise the results of the simulations for the
IEEE 14, 30, 57, 118 and 300-bus test-systems, respectively; the
simulation considered the weight ω varying from 0 to 1 with steps
of 0.1. In order to verify the existence of feasible solutions, smaller
steps have also been tested. For instance the IEEE 118-bus test-
system, smaller steps have been used to find solutions to fill the
gap between the weights (Table 6). These steps have been chosen
heuristically. 

Solutions with the symbol ‘a’ in Tables 2–7 are dominated by
others, i.e. dominated solutions are those that can be rejected
because a better solution has been found in any of the objectives
for other values of ω. For instance, in Table 5, consider the results
for DICOPT: for ω = 0.1 and ω = 0.2 the number of control
adjustments is the same (N = 7), but the active losses are better for
ω = 0.1. Thus, the solution found for ω = 0.2 is dominated by the
solution found for ω = 0.1. We can also use the term dominated
solutions for results obtained from different solvers. In Table 4, all
solvers found solutions with N = 1, but KNITRO found the best
solution for N = 1 when active power losses are taken into
account. Thus, we can say that the solution for N = 1 found by
KNITRO dominates the solutions found by DICOPT and the
sigmoid function with CONOPT.

Fig. 1௒ Algorithm 1: Proposed algorithm for solving MINLP problems with
binary variables

 
Table 1 Characteristics of the ORD problem for each IEEE
system
Test system Equality

constraints
Continuous
variables

Control
variables

IEEE 14 22 31 9
IEEE 30 53 65 12
IEEE 57 106 222 25
IEEE 118 181 430 77
IEEE 300 530 1142 189
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Fig. 2 illustrates the results shown in Table 4. The losses and
the number of control adjustments are those found for the multi-
objective models (9) and (11) for the IEEE 57-bus system. After
removing the dominated solutions among the models, it results in
Fig. 3. Similarly, Fig. 4 presents the multi-objective curve
originated from the combination of the solutions for the IEEE 118-
bus system. Fig. 5 depicts the results of the proposed method for
the IEEE 300-bus system. The figure has been generated for (11),
which considers the weighting method combined with the sigmoid
function for handling binary variables. In this latter case, only the
proposed method was successful to find the solutions. 

4.1 Analysis of the results

The solutions for the extreme values ω = 0 (minimisation of
control adjustment) and ω = 1 (minimisation of active power
losses) cannot be considered as solutions of the multi-objective.

However, these cases are taken into account as bounds for the
number of control adjustments and the active power losses.

The solutions of problem (9) obtained by solvers DICOPT and
KNITRO have been compared with the solutions obtained by
SIGMOID-CONOPT for the modified problem (11) and it is
possible to confirm the high equivalence among them.

Observing the results of the IEEE 14 and 30-bus systems,
DICOPT and KNITRO solvers were able to find good solutions for
all weighting factors. Considering the IEEE 57-bus system
(Table 4), DICOPT and CONOPT provided seven non-dominated
solutions, while KNITRO provided nine different non-dominated
solutions. Comparing solution by solution and disregarding
dominated solutions among solvers, DICOPT contributes with four
solutions to the combined curve, while KNITRO has eight and
CONOPT has six. This result is depicted in Fig. 3. Some solvers

Table 2 Simulation results for each solver for the IEEE 14-bus test-system
ω 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

DICOPT
N 0 0 0 2 4 4 4 5 4 6 9
losses, MW 13.39 13.39 13.39 12.88 12.34 12.34 12.34 12.31 12.34 12.28 12.27
ΔN — 0 0 2 2 0 0 1 −1 2 3
ΔLosses, MW — 0 0 −0.51 −0.54 0 0 −0.03 0.03 −0.06 −0.01
time, s 0.250 0.228 0.405 0.727 0.529 0.490 0.839 0.488 0.509 0.521 0.416

KNITRO
N 0 0 0 2 4 4 5 5 5 7 9
losses, MW 13.39 13.39 13.39 12.88 12.34 12.34 12.31 12.31 12.31 12.27 12.27
ΔN — 0 0 2 2 0 1 0 0 2 1
ΔLosses, MW — 0 0 −0.51 −0.54 0 −0.03 0 0 −0.04 0
time, s 0.307 0.210 0.299 0.306 0.306 0.300 0.306 0.300 0.307 0.420 0.298

Sigmoid function and CONOPT
N 0 0 0 2 4 4 4 4 4 5 8
losses, MW 13.39 13.39 13.39 12.88 12.34 12.34 12.34 12.34 12.34 12.31 12.28
ΔN — 0 0 2 2 0 0 0 0 1 3
ΔLosses, MW — 0 0 −0.51 −0.54 0 0 0 0 −0.03 −0.03
iterations 2 2 2 2 2 2 2 3 3 3 3
time, s 0.242 0.213 0.204 0.350 0.389 0.337 0.371 0.349 0.356 0.336 0.397
N is the number of control adjustments and losses is the active power losses found for the corresponding weighting factor ωi, respectively; ΔN = N

(ωi) − N
(ωi − 1);

ΔLosses = Losses
(ωi) − Losses

(ωi − 1); time is the elapsed time for the resolution given by the solver.
 

Table 3 Simulation results for each solver for the IEEE 30-bus test-system
ω 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

DICOPT
N 0 0 1 2 6 4 4 5 7 9 11
losses, MW 17.55 17.55 17.54 16.91 16.11 16.32 16.32 16.25 16.09 15.98 15.98
ΔN — 0.00 1.00 1.00 4.00 −2.00 0.00 1.00 2.00 2.00 2.00
ΔLosses, MW — 0.00 −0.01 −0.63 −0.80 0.21 0.00 −0.07 −0.16 −0.11 0.00
time, s 0.246 0.406 0.423 0.746 0.567 0.955 0.835 0.828 1.102 1.214 0.854

KNITRO
N 0 0 0 2 4 4 6 4 7 9 11
losses, MW 17.55 17.55 17.55 16.91 16.32 16.32 16.09 16.32 16.04 15.99 16.00
ΔN — 0.00 0.00 2.00 2.00 0.00 2.00 −2.00 3.00 2.00 2.00
ΔLosses, MW — 0.00 0.00 −0.64 −0.59 0.00 −0.23 0.23 −0.28 −0.05 0.01
time, s 0.305 0.307 0.303 0.417 0.419 0.412 0.409 0.442 0.533 0.532 0.306

Sigmoid function and CONOPT
N 0 0 0 4 4 6 7 7 8 9 11
losses, MW 17.55 17.55 17.55 16.32 16.32 16.09 16.04 16.04 16.01 15.98 16.00
ΔN — 0.00 0.00 4.00 0.00 2.00 1.00 0.00 1.00 1.00 2.00
ΔLosses, MW — 0.00 0.00 −1.23 0.00 −0.23 −0.05 0.00 −0.03 −0.03 0.02
iterations 2 2 2 4 4 4 4 4 4 4 3
time, s 0.228 0.241 0.213 0.624 0.593 0.582 0.626 0.580 0.581 0.586 0.397
N is the number of control adjustments and losses is the active power losses found for the corresponding weighting factor ωi, respectively; ΔN = N

(ωi) − N
(ωi − 1);

Δ Losses = Losses
(ωi) − Losses

(ωi − 1); time is the elapsed time for the resolution given by the solver.
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presented the same points, e.g. 8, 11 and 15 control actions. Only
the symbol representing the fastest solver is presented in the figure.

The difficulty in solving MINLP problems with binary
variables by MINLP solvers can be noticed from the results
obtained by DICOPT and KNITRO. As the problem size increases,
the number of continuous and binary variables also increases and
the drop on the efficiency of MINLP solvers can be noticed from
the increase on the computation time and failure on the
convergence for the IEEE 118-bus system.

For the IEEE 118-bus system, tests with other values of ω have
been necessary; while such an analysis for the other systems used
11 values of ω, the analysis for the IEEE 118-bus system was
carried out using 24 values of ω (Tables 5 and 6). DICOPT and

KNITRO found, respectively, 13 and 8 non-dominated solutions,
while CONOPT found 16 non-dominated solutions. Comparing
solution by solution and disregarding dominated solutions among
solvers, DICOPT has no solution in the combined curve, while
KNITRO has 4 and CONOPT has 11. This result is depicted in
Fig. 4. Concerning the quality of the results, DICOPT provides low
performance feasible solutions, while KNITRO failed to provide
feasible solutions for five values of ω. The proposed resolution
methodology using the sigmoid function and CONOPT found
feasible solutions for all weighting factors, and it is competitive
with DICOPT and KNITRO. Another important characteristic of
the sigmoid function and CONOPT is its computational processing
time; the proposed resolution methodology using the sigmoid

Table 4 Simulation results for each solver for the IEEE 57-bus test-system
ω 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

DICOPT
N 1 5 8 8 9 9 8 14 11 17a 24

losses, MW 26.04 24.74 21.86 21.86 21.75 21.75 21.86 21.19 21.67 21.49 20.92
ΔN — 4.00 3.00 0.00 1.00 0.00 −1.00 6.00 −3.00 6.00 7.00
ΔLosses, MW — −1.30 −2.88 0.00 −0.11 0.00 0.11 −0.67 0.48 −0.18 −0.57
time, s 0.281 1.078 1.411 1.756 0.865 1.265 0.932 2.940 1.780 2.013 0.946

KNITRO
N 2a 2 1 6 8 9 11 14 15 18 24a

losses, MW 26.18 25.47 25.83 24.09 21.86 21.85 21.40 21.15 21.07 20.97 21.37
ΔN — 0.00 −1.00 5.00 2.00 1.00 2.00 3.00 1.00 3.00 6.00
ΔLosses, MW — −0.71 0.36 −1.74 −2.23 −0.01 −0.45 −0.25 −0.08 −0.10 0.40
time, s 0.344 0.852 0.440 0.855 0.880 1.186 2.489 3.252 5.108 7.077 0.413

Sigmoid function and CONOPT
N 1a 1 1 8 8 8 11 15 16 19 25

losses, MW 26.16 26.04 26.04 21.86 21.86 21.86 21.40 21.07 21.01 20.96 20.92
ΔN — 0.00 0.00 7.00 0.00 0.00 3.00 4.00 1.00 3.00 6.00
ΔLosses, MW — −0.12 0.00 −4.18 0.00 0.00 −0.46 −0.33 −0.06 −0.05 −0.04
iterations 5 5 5 4 4 4 4 4 4 4 5
time, s 0.590 0.577 0.727 0.648 0.630 0.616 0.536 0.529 0.606 0.496 0.621
N is the number of control adjustments and losses is the active power losses found for the corresponding weighting factor ωi, respectively; ΔN = N

(ωi) − N
(ωi − 1);

ΔLosses = Losses
(ωi) − Losses

(ωi − 1); time is the elapsed time for the resolution given by the solver.
aSolutions are dominated by others.

 

Table 5 Simulation results for each solver for the IEEE 118-bus test-system
ω 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

DICOPT
N 13a 7 7a 12 12a 50 55 57 57a 61 75

losses, MW 132.26 131.35 131.80 129.85 131.53 115.75 110.52 106.72 110.46 106.39 106.05
ΔN — −6.00 0.00 5.00 0.00 38.00 5.00 2.00 0.00 4.00 14.00
ΔLosses, MW — −0.91 0.45 −1.95 1.68 −15.78 −5.23 −3.80 3.74 −4.07 −0.34
time, s 7.016 2.787 22.643 166.511 28.820 276.049 42.849 15.803 7.518 24.183 1.216

KNITRO
N 1 1a 2 5 — — 57 60 59 60 76

losses, MW 132.46 132.48 131.94 130.32 — — 106.57 106.23 106.37 106.23 106.05
ΔN — 0.00 1.00 3.00 — — — 3.00 −1.00 1.00 16.00
ΔLosses, MW — 0.02 −0.54 −1.62 — — — −0.34 0.14 −0.14 −0.18
time, s 2.772 7.734 128.324 234.619 1000.002 1000.005 51.137 41.812 27.535 42.295 0.629

Sigmoid function and CONOPT
N 1 1 1 5 15 55 58 59 60 62 70
losses, MW 132.48 132.48 132.48 128.88 125.12 107.82 106.38 106.25 106.20 106.12 106.05
ΔN — 0.00 0.00 4.00 10.00 40.00 3.00 1.00 1.00 2.00 8.00
ΔLosses, MW — 0.00 0.00 −3.60 −3.76 −17.30 −1.44 −0.13 −0.05 −0.08 −0.07
iterations 7 7 7 3 3 3 3 3 3 3 3
time, s 0.932 1.162 0.873 0.557 1.010 1.776 2.320 1.982 2.310 2.311 2.060
N is the number of control adjustments and losses is the active power losses found for the corresponding weighting factor ωi, respectively; ΔN = N

(ωi) − N
(ωi − 1);

Δ Losses = Losses
(ωi) − Losses

(ωi − 1); time is the elapsed time for the resolution given by the solver.
aSolutions are dominated by others.
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function and CONOPT demanded, in average, 29.824 s to find all
24 solutions, while DICOPT demanded 4434.124 s and KNITRO
15555.190 s to run all cases.

For the IEEE 300-bus test-system (Table 7), the proposed
method successfully provides results for ω varying from 0 to 1 in
steps of 0.1 using the sigmoid function and CONOPT in <50 s. On

the other hand, both MINLP solvers, i.e. KNITRO and DICOPT,
failed in this task.

5௑Conclusions
In this paper, a multi-objective ORD model which aims at
minimising the active power losses on the transmission system and
the number of control adjustments has been proposed. The main
idea is to find the compromise between the minimisation of losses
and the required number of control actions, providing more options
for system operation. In order to make the ORD study feasible
taking into account the complexity of the problem which originally
consists in an MINLP problem, we have proposed a transformed
NLP model that uses a sigmoid function for handling with binary
variables which are solved by an iterative algorithm. The result of
the method is feasible for the original MINLP model.

The method has been tested with the IEEE benchmark test-
systems. The results have indicated good performance of the
proposed resolution methodology in comparison to the specialised
MINLP solvers (DICOPT and KNITRO). When testing with small
systems, such as the IEEE 57-bus system, DICOPT and KNITRO
provided good non-dominated solutions, and the combination of all
methods allowed the construction of the two objectives curve
which enriches the final solution. However, the curse of
dimensionality has been observed for larger systems such as the
IEEE-118 and IEEE 300-bus systems, where DICOPT and
KNITRO have presented, in some cases, elevated computation
time to obtain feasible results or even stagnation, while the

Table 6 Simulation results for each solver for the IEEE 118-bus test-system considering smaller steps for weighting factor ω
between 0.4 and 0.5
ω 0.41 0.42 0.43 0.44 0.441 0.442 0.443 0.444 0.445 0.446 0.447 0.448 0.449

DICOPT
N 14a 17 27 37 35 35 35 35 35 35 35 13 28

losses, MW 131.79 129.86 128.01 122.61 122.92 122.92 122.92 122.92 122.92 122.92 122.92 131.14 124.29
ΔN — 3 10 10 −2 0 0 0 0 0 0 −22 15
ΔLosses, MW — −1.93 −1.85 −5.40 0.31 0.00 0.00 0.00 0.00 0.00 0.00 8.22 −6.85
time, s 734.155 166.167 28.469 220.242 181.058 189.893 224.332 807.792 271.753 229.948 261.315 303.988 219.617

KNITRO
N 13a 59a — 12a 12 12a — 63a 63a 63a — 13a 13a

losses, MW 126.78 124.81 — 120.18 119.74 130.11 — 127.69 120.87 118.36 — 126.22 122.08
ΔN — 46 — — 0 0 — — 0 0 — — 0
ΔLosses, MW — −1.97 — — −0.44 10.37 — — −6.82 −2.51 — — −4.14
time, s 1017.283 1000.114 1000.077 1000.096 1000.080 1000.094 1000.076 1000.082 1000.089 1000.090 1000.082 1000.084 1000.078

Sigmoid function and CONOPT
N 15 20 26 27 27 27 27 29 38 47 52 52 52
losses, MW 125.12 123.64 121.20 120.67 120.67 120.67 120.67 119.69 116.48 112.48 109.90 109.90 109.90
ΔN — 5 6 1 0 0 0 2 9 9 5 0 0
ΔLosses, MW — −1.48 −2.44 −0.53 0.00 0.00 0.00 −0.98 −3.21 −4.00 −2.58 0.00 0.00
iterations 3 3 3 3 3 3 3 3 3 3 3 3 3
time, s 0.636 0.609 0.754 0.742 0.818 0.750 0.811 1.187 1.017 1.191 1.526 1.310 1.191
N is the number of control adjustments and losses is the active power losses found for the corresponding weighting factor ωi, respectively; ΔN = N

(ωi) − N
(ωi − 1);

ΔLosses = Losses
(ωi) − Losses

(ωi − 1); time is the elapsed time for the resolution given by the solver.
aSolutions are dominated by others.

 

Table 7 Simulation results for sigmoid function and CONOPT for the IEEE 300-bus test-system
ω 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Sigmoid function and CONOPT
N 0 3 29 38 57 73 85 94 105 116 180
losses, MW 408.19 397.27 369.23 361.40 351.40 345.79 343.64 342.29 341.47 341.04 340.78
ΔN — 3.00 26.00 9.00 19.00 16.00 12.00 9.00 11.00 11.00 64.00
ΔLosses, MW — −10.92 −28.04 −7.83 −10.00 −5.61 −2.15 −1.35 −0.82 −0.43 −0.26
iterations 2 2 3 3 3 3 3 3 3 3 3
time, s 0.442 0.987 1.897 2.570 3.717 5.634 5.781 6.422 6.001 7.097 7.930
N is the number of control adjustments and losses is the active power losses found for the corresponding weighting factor ωi, respectively; ΔN = N

(ωi) − N
(ωi − 1);

Δ Losses = Losses
(ωi) − Losses

(ωi − 1); time is the elapsed time for the resolution given by the solver.
 

Fig. 2௒ Active power losses by the number of control adjustments for the
IEEE 57-bus system (obtained with ω varying from 0 to 1)
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proposed method SIGMOID-CONOPT succeeded with feasible
solutions and low processing time. We also believe the proposed
sigmoid function-based approach has potential to be applied to a
multi-horizon framework. Care must be taken in this case if time
coupling constraints exist.
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Fig. 3௒ Active power losses by the number of control adjustments for the
IEEE 57-bus test-system: non-dominated solutions obtained for the
proposed ORD problem combining three different solvers

 

Fig. 4௒ Active power losses by the number of control adjustments for the
IEEE 118-bus test-system: non-dominated solutions obtained for the
proposed ORD model combining three different solvers

 

Fig. 5௒ Active power losses by the number of control adjustments for the
IEEE 300-bus system (obtained with ω varying from 0 to 1), using the
sigmoid function for handling binary variables
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